Boundedness of multilinear fractional integral commutators 多线性分数次积分算子交换子的有界性
A note on multilinear fractional integrals with rough kernel 关于粗糙核多线性分数次积分的一点注记
The boundedness of multilinear fractional integral operators on weak type hardy spaces 空间上多线性分数次积分算子的有界性
Our main results are listed as follows : theorem 2 . 4 let 0 < < 1 , n / n + , 1 / q = 1 / p - / n , and lr ( sn - 1 ) with r > n / n - be homogeneous of degree zero on rn 把本文分为5章。本文的第二章讨论的是分数次积分算子在弱hardy空间中的有界性,主要定理如下:定理2
This paper introduces the fractional integrals and the fractional maximal functions on ( r ( superscript n ) ) , and discusses their boundedness . the obtained results accord with the doubling measure relative results 摘要在非二倍测度条件下引入分数次积分和分数次极大函数,并讨论了它们的有界性,其结果与二倍测度相应结果一致。