Because the algorithm of support vector machine is a convex quadratic optimization problem , the local optimal solution is certainly the global optimal one 并且,由于支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解。
First of all , we discuss the existence of solutions for first - order impulsive differential equations we extended the corresponding conclutions of paper [ 3 ] 首先,我们讨论了一阶脉冲泛函微分方程极值解的存在性。所得结果推广了文[ 3 ]中相应的结论。
In the course of searching the optimum solution , it can accept a value make objective function good , but also a bad one . in this way it will avoid falling into a local extremum and get a global optimum value 而且在搜索的过程中,不仅接受使目标函数变好的解,而且还能以一定的概率接受坏解,这样将尽量避免陷入局部极值解而达到全局最优解。
In part i , using the method of upper and lower solutions conbined with monotone iterative technique , we discuss boundary value problem for the following impulsive differential equation with a parameter the existence of extremal solutions is considered 在第一部分中,我们利用上下解方法和单调迭代技术,讨论了带参数的脉冲微分方程边值问题极值解的存在性。
In this article , we study the infinite boundary value problems for first order nonlinear impulsive differential equations with " supremum " by means of the upper and lower solution method and the monotone iterative technique , and obtain the existence theorems for their extremal solutions 摘要应用上下解方法和单调迭代技术研究了带有上确界的一阶非线性脉冲微分方程无穷边值问题,并获得了其极值解的存在性结果。
Only a few have studyed family of problems . we extend the work in [ 26 ] - [ 27 ] . first , under the classical assumption that ( t ) ( t ) , we consider the periodic boundary value problem , when / is independent of x ( t ) . second , under the case that ( t ) ( t ) , we consider the periodic boundary value problem and describe a constructive method which yields two monotone sequences that converge uniformly to extremal solutions to periodic boundary value problems , when / depends on x ( t ) 气t )这一项的边值间题更是如此,基于此,我们把微分方程方面的结果推广到时间模上.首先考虑在下解小于上解的情况下, f不含。 ( t )这一项的周期边值问题,而后在下解大于上解的情况下,考虑了含有、 ( t )这一项的周期边值问题,描述了一种构造性方法,构造了两个单调序列其一致收敛到二阶周期边值问题的极值解