A method of differential equation using in restoration to deflection curve for solution of displacement of beams 挠曲线复位的微分方程解法求梁的位移
When cable interacted under the load both of gravity and inertia force , derivative equation of cable ' s defection curve in space is deduced to study cable ' s rigidity movement , and flexible deformation is also determined by finite element method 分析了悬索上各离散点的位置、速度、加速度和惯性力。推导了在重力和惯性力共同作用下悬索的空间挠曲线微分方程,并研究了悬索的刚体位移和弹性变形。
According to eigenvalue equation ( general formula ) of the energy method of the plane steel frame structure stability , and considering the restriction of the end of the column of the main steel frame and function of deflection curve gained from the differential balance equation general resolution , we get the equation for calculating the length coefficient of the main frame structure stability of the steel arch gate and the resolutions are also given 根据平面刚架稳定性能量法特征值方程(通式) ,考虑弧形钢闸门主框架柱的柱端约束的特殊情况,求出挠曲线函数(试解函数)通解,得到弧形钢闸门主框架柱稳定性计算长度系数方程。其中弧门主框架主横梁式形框架的临界荷载比较现行规范推荐的有限元法简单方便、结果精确及物理概念明确等优点。
4 . choosing the reasonable deflection curve function . according to the energy method and the constrained condition of column end of the steel arch gate , the article presents a practical calculating formula for the stability of the main frame structure of the steel arch gate 选择合理的挠曲线函数(试解函数) ,根据能量法及弧门柱端约束条件,提出弧形钢闸门主框架(平面钢框架)稳定性计算的实用解析计算公式,并根据影响弧门主框架稳定性的因素对该公式进行修正。
And results are : ( 1 ) analyze the force and distortion on pipeline under collapse and gulch in theory . on the base of beam deformation , analyze the bending moment and deformation of pipeline with frusta and without frusta . calculate a true problem , contrast the differences between pipeline with frusta and one without frusta , draw some conclusions 得到的主要结果为: ( 1 )基于弹性地基理论和弹性梁的挠曲线理论,给出了管道在固定墩(相当跨越河沟情况)和无固定墩(相当坍塌和冲沟情况)的变形微分方程,并分析了当量轴力为拉力或压力时管道的变形和受力情况。