均方误差 error of mean squares; error of mean suare; error root-mean-square; error, mean-squared (mse); mea quarederror; mean-squared error; mse mean squared error; quadratic error; root mean square error; square error
Perceptron , relaxation , mse and ho - kashyap ( hk ) algorithm . hk is not robust to outliers . the modified hk with square approximation of the misclassification errors ( mhks ) tries to avoid this shortcoming and adopts similar principle to the support vector machine to maximize the separation margin 线性分类器因其简单、易于分析和实现且容易推广为非线性分类器的优点而成为模式分类最常用的分类器,并产生了感知器( perceptron ) 、松弛算法( relaxation ) 、最小平方误差( minimumsquareerror , mse )和ho - kashyap ( h - k )算法等经典算法。
The followings are the major tasks in the thesis : 1 ) in space domain , 24 gabor wavelets filters are constructed . according to the optimal band of gabor wavelets filter choosing criterion , we choose the 12 gabor wavelets filters , which are verified the information of the 12 filtered images included above 98 % all the information of the all filtered images by the experiments " results 本文的主要工作如下: 1 )在空间通过卷积构造了24个gabor小波滤波器,提出一个基于最小平方误差选择最佳gabor小波滤波器组的方法,实验证明选取的12个gabor小波滤波器滤波后图像重构信息代表了所有滤波后图像重构信息的98以上。
Aimed at the parameter estimation and model reduction problems of non - linear systems in noisy environment , a class of particle swami optimization ( pso ) approach with hypothesis test is proposed , named psoht , which estimates parameters by using pso operator in conjunction with evaluation and comparison in statistical sense to minimize mean square error function 摘要针对噪声环境下的非线性系统参数估计和模型降阶问题,提出了一种带假设检验的微粒群优化算法( psoht ) ,以最小化平均平方误差为目标,结合统计意义下的评价和比较,通过微粒群操作进行参数估计。