The discussion of pullback dirac structures for lie bialgebroid and lefe invariant dirac structures on poisson groupoid is our purpose in this paper 本文主要目的是借助极大迷向子丛对偶特征对来研究拉回dirac结构和泊松群胚上的dirac结构。
The content of the section two is about the dirac structure for lie algebroid . in this section the maximal isotropic subbundle , the characteristic pairs and the dual characteristic pairs are introduced . and some related conclusions are quoted directly 引入了极大迷向子丛,对偶特征对和特征对的概念,直接引用了已有的相关的结论,重要的是特征对尤其是对偶特征对在讨论极大迷向子丛可积性方面起着关键作用,二者是不可分割的。
The dirac stracture for lie bialgebroid ( a , a * ) is a subbundle l c a + a * , which is maximally isotropic with respect to symmetric bilinear form ( , ) + , whose section is closed under the bracket [ , ] . the dual characteristic pairs of maximal isotropic subbundle is an important conception which is used to describe maximal isotropic subbundle 李双代数胚上的dirac结构是指在对称配对( , ) _ +下极大迷向,在[ , ]下可积的子丛,对偶特征对是描述极大迷向子丛的重要概念。
With the if and only if condition of the condition when a maximally isotropic subbundle is a dirac structure , we particularly discuss some lie bialgebroids and its dirac structures in the section three . moreover , we get the similar conclusions and theorems . from these , we know more properties of poisson - nijenhuis manifold 利用极大迷向子丛是dirac结构的充要条件,第三节详细讨论了poisson - nijenhuis流形上的几种李双代数胚及其上的dirac结构,并由此得到了一些poisson - nijenhuis流形上dirac结构的特殊性质。