This paper is aimed at demonstrating the validity of adapting artificial neural networks ( ann ) to model behavior of the building materials in macroscopic and microscopic aspects 本文证明了人工神经网络( ann )应用于建筑材料系统辨识领域的有效性,主要从微观和宏观两个方面进行了研究。
Here we try to test the advanced sensors and artificial neural network ( ann ) controller , using the computer for a simulation , to get a better performance 本文尝试使用较先进的传感器及人工神经网络控制器来代替传统的测量和控制方式,并对其控制效果进行模拟仿真,以期望得到较满意的控制效果。
In nntcs , we use artificial neural networks ( ann ) as the classifier . the recorded term frequencies form the original feature vector , matching with neurons in the input layer of ann one by one 系统使用神经网络作为分类器,特征词的词频组成原始特征向量,和神经网络输入层的神经元一一对应。
Artificial neural network ( ann ) is a approximate simulation of biologic nerve system , which is a network model with a special algorithm got from biologic prototype after abstractly research 人工神经网络是对生物神经系统的近似模拟,是把生物原型通过理论研究抽象成为具有某种特定算法的网络模型。
In this paper , data mining technology and the theory of stlf are discussed at first , and then the thesis puts emphasis on studying of artificial neural network ( ann ) method 本文首先研究了数据挖掘技术和短期负荷预测的理论,然后研究了人工神经网络方法,并用bp神经网络建立短期负荷预测综合模型。
This part contained three subjects : designing and optimizing fuzzy logic controllers ( flc ) and artificial neural networks ( ann ) , fuzzy neural network model identification of complex system 主要包括模糊控制器与人工神经网络的优化设计,以及具有不确定性的复杂系统的模糊神经网络模型辨识三个方面。
Aiming at the fact that numerical simulations are very time - consuming and are used very limitedly in alternative cad , artificial neural network ( ann ) is introduced to electromagnetic modeling to solve the problem 针对数值仿真时间过长,难以实现cad交互使用的局限性,将人工神经网络引入到电磁建模中。
The training results of the artificial neural network ( ann ) have been analyzed . the network training results are acceptable for the highly discrete human behaviour in building fire 分析讨论了人工神经网络的训练结果,认为对于火灾中人的行为反应这类高度离散型研究对象而言,网络训练结果是可以接受的。
In addition , the new approach of artificial neural network ( ann ) for measuring harmonics on - line is proposed , and the simulation results showed that it is superior to other existing methods 叙述了国内外的高次谐波测量的主要方法及其优缺点,进而提出应用人工神经网络这一新方法对高次谐波进行监测的优越性。
The deduction method of srm ' s rotor position based on artificial neural network ( ann ) is studied in this paper . an ann rotor position ( i , l ) model of srm is built with modified bp neural network 本文研究了基于人工神经网络的sr电机转子位置推断,采用改进的bp算法建立了sr电机神经网络转子位置( i , l )模型。