inversive造句
例句与造句
- In the fourth part . let s be an e - inversive e - conjugate semigroup
反之,如果,为s上的一个强同余,那么(丞, 。 - A preliminary analysis of inversive responsibility to give evidences for infringement in medical disputes
浅析医疗事故侵权举证责任倒置 - In the third part , firstly we introduce a new class of semigroup s ( p ) called e - inversive p - scmigronp
巨之, s的任一核正规系,可以决定s上的一个强同余 - Definition 1 let s be an e - inversive semigroup and e ( s ) the set of idem - potent of s . let p c e ( s )
反之,设p是s上的强同余, a是p的核则a是s的核正规系且尸。 - In this paper . cm the basis of the concept , of regular semigroup . we study e - inversive semigroups . the paper is divided into four parts
本文在正则半群的基础上研究e -反演半群。全文共分四节。 - It's difficult to find inversive in a sentence. 用inversive造句挺难的
- In this thesis . we give some characterizations of two special e - inversive semigroups and characterize strong congruences on both of them . in the first part . lets be an . e - invcrsivc - semigroup . we define a strong congruence on s . then describe it in terms of its kernels and traces
全文共分五节:在第一节中,给出e -反演e -半群s的概念,定义s上的强同余,用“核迹方法”给以刻画。 - P ) is called an e - inversive p - semigroup if it satisfies the following main result 2 let be a normal partition of p . then x s ( p ) : for any a ? / then there exist and b " ? u " ( 6 ) such that a ' paa . b ' pab c p3 and apaa "
接着用“核迹”方法研究s仔)上的强p同余,即证明s尸)上的任一强p同余,可以决定s尸)的一个强p同余对,反之s的任一强p同余对,可以决定s ( p )上的一个强p同余 - This paper concerns with almost all kinds of generators such as the linear , nonlinear and inversive congruential methods , fibonacci and tausworthe sequences , add - with - carry and subtract - with - borrow methods , multiple prime generator and chaotic mapping
目前国际上关于随机数有很多热门的理论和方法,除了传统的线性同余法,还有非线性同余法、 fibonacci 、 tausworthe序列、进位加?借位减发生器法等。 - Definition 1 let s be e - inversive semigroup . then s is called a weak r - uuipotent e - iiiversivc semigroup if it satisfies t he following definition 2 let p he a congruence on s ( r ) . thei ) p is a r - congruence if it satisfies the following main result 3 then t is the maximum idempotent separating r - congruence on a weak r -
接着给出s田)上的最大的幂等元分离r同余的一个刻画,介绍r正则、 r正规子集的概念最后给出s叮)上的幂等元分离r同余格的一个刻画 - We describe the strong congruences on s in terms of their kernels and traces . a semigroup 5 is called an e - inversive e - congruate semigroup , if s is e - inversive semigroup and for each c ? s . c " ? w ( c ) . ce ( s ) c ' . c ' e ( s ) c c e ( s ) . a congruence on 5 is called a strong congruence , if ( i ) va . be s . apb = > vg " ? v ( a ) . vb " ? v ( b }
,叫为s的一个强同余对,且t二h ( ; r , 11e , , ) ?在第五节中,引入了e一反演e共轭半群s的核正规系的概念,用核正规系的方法刻画s上的强同余 - At last , this paper analyzed the influence of the inversive receiver to the chracteristic of the clutter and the ratio of signal power and the noise power , discussed the effective detection of target signal in correlated clutter , and then put forward a new method naming multi - periods shift accumulation for detecting moving target when not knowing the exact movement parameter
最后,本文分析了倒置接收对目标回波信噪比及杂波特性的影响,讨论了在相关杂波区对回波信号有效检测的方法。针对如何在弹目相对运动参数未知的条件下对高速运动目标进行积累检测这一问题,提出了一种多周期移位积累的新方法。 - In the first part . firstly we introduce a new class of semigroup s called r - unipotent e - inversive seniigroup . serondly we describe the strong congruences on s in terms of their kernels and traces . ve prove that a strong congruence on s can present a strong congruence pair : conversely . a strong congruence pair on s can determine a strong congruence
接着用“核-迹”方法研究s上的强同余,即证明s上的任一强同余,可以决定s的一个强同余对,反之s的任一强同余对,可以决定s上的一个强同余。 - Main result 2 let a be a kernel normal system of an e - inversive e - semigroup s . then p is a strong congruence on s and a is the kernel of p , 4 - conversely . let p be a strong congruence on an e - inversive e - semigroup s - let a be the kernel of p . then a is a kernel normal system of s and pa = p - main result 3 let [ p ] be a 0 - class of a ( s ) / 0 . define pmax = { ( a , b ) e . then pmax is the largest strong congruence of [ p ]
反之,若是s上的强同余,则( trp , kerp )是s的强同余对,且= ( trp , kerp ) 。 v第h节,首先定义一类新的半群即所谓的e反演e半群s接着用“核正规系”方法研究s上的强同余,即证明s上的任一强同余,可以决定s的一个核正规系