Lacking of space locality in time domain , fourier analysis can only make certain of the integral singularity of a function or signal . as a result , it is difficult to detect the spatial position and distribution of broken signal by fourier analysis . wavelet analysis has the characteristic of spatial locality , and its wideness in both windows of the time and the frequency can be adjusted , so it can analyze the details of a signal 经典的fourier变换把信号按三角正、余弦基展开,将任意函数表示为具有不同频率的谐波函数的线性迭加,能较好地刻划信号的频率特性,但它在时空域上无任何分辨,不能作局部分析,这在理论和应用上都带来了许多不便。
After introducing the conventional edge detection operator and multiscale wavelet edge detection operator , we discussed the well quality of b - spline function > n - class derivative of gauss function n harmonic function and hermite function in wavelet theory and their concrete application in the image edge detection 在对单尺度下的传统边缘检测算子和多尺度小波边缘检测算子介绍的基础上,讨论了b样条、 gauss函数的n阶导数、谐波函数以及hermite函数在小波理论中所具有的良好性质,以及它们在图像边缘检测中的具体应用。