Newton method is favorable for the reason that it has two - convergent ratio under some conditions 众所周知, newton法在一定的条件下具有二阶收敛性。
Under appropriate conditions , we obtain the global and quadratic convergence of the proposed method 在适当的条件下,我们证明了算法的全局收敛性和二阶收敛性。
Fan and yuan [ 6 ] uses another method that has proved under the local error bound condition , if we choice the parameter as the norm of the function , the sequence produced by the levenberg - marquardt method converges quadraticlly to a solution of the system of the equations 如此选取参数有一些不足之处。范、袁在[ 6 ]中用另一种方法证明了当迭代参数为当前迭代点处函数值的模时, levenberg - marquardt方法具有二阶收敛性。
It exploits the structured of the hessian matrix of the objective function sufficiently . an attractive property of the structured bfgs method is its local superlinear / quadratic convergence property for the nonzero / zero residual problems . the local convergence of the structured bfgs method has been well established 它们充分利用了目标函数的hesse矩阵的结构以提高算法的效率,该算法的显著优点是对于零残量问题具有二阶收敛性而对于非零残量问题具有超线性收敛性。
Here we consider the choice of the parameter as the norm of the gratitude of the function . we prove under the local error bound condition that the levenberg - marquardt method with this parameter converges quadraticlly to a solution of the system of the equations . and we also present two globally convergent levenberg - marquardt algorithms using line search techniques and trust region approach respectively 我们提出选取迭代参数为当前迭代点处函数梯度的模,在局部误差界条件下, levenberg - marquardt方法依然具有二阶收敛性,并考虑了线搜索和信赖域技巧的levenberg - marquardt方法,分析了其全局收敛性。