The first part of the present paper is preliminaries . at the second part we show a lemma as follows : supposing s1 , s2 , . . . are strictly increasing sequences , then there exists a strictly increasing sequence t such that for any i , si and t contain a common subsequence having upper density 1 in t . using the lemma we give a chaotic form more rigorous than distribution chaos in a sequence 本文第一部分介绍有关的预备知识;第二部分首先证明了一个关键性引理:对于给定的可数(包括有限)个严格递增的正整数序列s _ 1 , s _ 2 , … ,可以找到某一个严格递增的正整数序列t ,使得对于每一个i = 1 , 2 , … ,序列s _ i与序列t有一个共同的子序列,它在序列t中的上密度为1 。